...if your desired language isn't available, the alternative language will be shown...
informatie pagina voor experimenteel radio-onderzoekers

  Item for sale
  Item adressen
  Item fail-gallery
  Item press information
  Item weblog/news

 apparatuur foto's
  Item HP 331A distortion analyser
  Item Philips PM2524 multimeter
  Item Rigol DS-1054Z
  Item Sayrosa 261 frequentieteller

 applicaties (pc)
  Item UI-View (APRS)

  Item 27Mc
  Item FRS
  Item LPD
  Item PMR

  Item (E)EPROM
  Item crystals
  Item resistor coding

  Item RF Technology Days 2016

  Item 12VDC connector
  Item coax connectors
  Item Condor 16
  Item TNC connector

 Racal Cougar
  Item 0. Racal Cougar
  Item 1. introduction
  Item 2. compnents
  Item 3. assemblies
  Item 4. technical
  Item 5. modifications
  Item 6. data protocol
  Item 7. service

  Item boeken
  Item handleiding FUP1DZ
  Item jargon
  Item Morse code
  Item NATO alphabet
  Item Q-codes
  Item radio notebook

  Item 6H2N-EB / ECC83 / 12AX7
  Item algemene informatie
  Item ATP4 elektronenbuis
  Item elektronenbuis codering
  Item elektronenbuizen
  Item gloeistroom/-spanning
  Item reactiveren/reformeren
  Item stabilisatiebuizen

  Item 23 cm duplex filter
  Item Aerial Facilities BPD-410/420-3N
  Item Celwave P522 UHF duplexer
  Item Hoxin DX-720 diplexer
  Item JWX triplexer bc/2m/70cm
  Item Kenwood LF-30A LPF
  Item Motorola UHF cavity combiner
  Item Radiosystem RS460 cavity BPF
  Item stub filter [EN]
  Item basics: diplexer or duplexer

  Item AM-65/GRC
  Item LV-80 RF PA
  Item RT-70/GRC
  Item SEM antennetuner (AGAT)
  Item SEM25
  Item SEM25 gloeispanning
  Item SEM35

  Item krimplak
  Item schroefdraad
  Item verspanen

  Item 10/20/30 dB att
  Item BG7TBL noise source
  Item Daiwa CN-101L
  Item Daiwa CN-801
  Item HP P382A attenuator
  Item x-tal tester (DIY project)
  Item Krohn-Hite 4100 signal generator
  Item Radiosystem AB dummy load
  Item Rigol DSA815-TG
  Item Rohde&Schwarz SMT 02
  Item Spinner BN 52-77-66
  Item Zetagi DL50 dummyload

  Item 10 MHz low pass filter
  Item Frequency Electronics FE-5680A
  Item HP 10811 OCVCXO
  Item RS920 10MHz oscillator
  Item RS920 OCXO timestandard
  Item timestandard (general)
  Item time standard; BG7TBL
  Item tijdstandaard; VE2ZAZ
  Item time standard; W5OJM
  Item Trimble 34310-T OCVCXO
  Item Yaesu FT-8x7 (TC)XO

 meetapparatuur (info)
  Item (poor mans) spectrum analyser
  Item dummyload
  Item frequentieteller
  Item functiegenerator
  Item meetverzwakker
  Item octopus component tester
  Item oscillator adjustment
  Item staandegolfmeter
  Item test- en meetapparatuur

  Item Counter 1 MHz input mod.
  Item Yaesu FT-897/FT-897D
  Item Yaesu MH-48 lock mod

  Item (coax) kabels coderen
  Item APRS
  Item AWG draadtabel
  Item coax kabels testen
  Item Yaesu FT-8x7 CAT port
  Item paneelbouw

  Item (remote) coax switch
  Item afregelen FT-8x7(D)
  Item APRS basispost
  Item APRS tracker
  Item coax switch 1-8
  Item condensator microfoon
  Item counter prescaler
  Item CTCSS module
  Item FT-2000 headset
  Item FT-2000 remote
  Item FUP1DZS meetzender
  Item Geloso G.1/1040-A
  Item Geroh AKAC019 liermast
  Item go-kit
  Item headset (Avcomm)
  Item hoofdtelefoon versterker PL500
  Item Icom IC-25E
  Item Kerona AR-301 rotor
  Item KLV 400 RF PA ombouw
  Item Lineair 400W (Frinear)
  Item MFJ-948 antennetuner
  Item parallelle poort controller
  Item Pixie CW TX
  Item programmeren FT-8x7
  Item Samlex SEC 1223 voeding
  Item TH-D7E tracker
  Item Tinytrak 4
  Item uTracer 3+
  Item voedingsconnector FT-897
  Item VSWR SA meetbrug
  Item Yaesu FT-857/897 meter
  Item zwaai Alinco DR-135E MkII

  Item elektromigratie in filters

  Item Ameritron ATR-20 tuner
  Item Baofeng UV-5R
  Item Diamond X-30N rondstraler
  Item Icom IC-2e
  Item Icom IC-7300
  Item Kenwood TH-D7E
  Item Kenwood TS-830M
  Item MFJ-901b antennetuner
  Item MFJ-948 antennetuner
  Item MFJ-971 antenna tuner
  Item QYT KT-8900
  Item Triple-P TXU-1256 repeater
  Item Wouxun KG-UVD1P
  Item Wouxun speakermike
  Item Yaesu FT-101E
  Item Yaesu FT-1500M
  Item Yaesu FT-2000
  Item Yaesu FT-7800
  Item Yaesu FT-817
  Item Yaesu FT-857(D)
  Item Yaesu FT-897(D)
  Item Yaesu FT-8x7 serie
  Item Yaesu FT-991

  Item capacitors
  Item Geloso 3227 versterker
  Item Kenwood TS-830M
  Item Lorenz SEM25
  Item Yaesu FT-897D

 Rigol DSA815-TG
  Item meting: omroepband
  Item test: overspraak TG
  Item test: TG signaal

  Item elektret microphone
  Item Time Domain Reflectometer

 surplus apparatuur
  Item Bosch Condor 16
  Item Motorola GM950 (70 MHz)
  Item Rohill R-2050

 telefonie surplus
  Item Ericsson F-955
  Item Ericsson F-955 modifcations 2017
  Item Ericsson RS203/RS2062
  Item Nokia NCM30
  Item Nokia NNF30
  Item Nokia RD72
  Item Radiosystem monitoring unit
  Item Radiosystem RS922
  Item Radiosystem RS923
  Item Radiosystem RS950
  Item Radiosystem RS951
  Item Radiosystems RS963
  Item Radiosystems RS9694
  Item RS925 service box

  Item aarding
  Item antenna rotor
  Item antennetuner
  Item circulator/isolator
  Item snubber diode

  Item Minipro TL866 programmer
  Item Velleman VTSSC50N soldering iron
  Item Yihua 852D+ soldeering station
  Item ZD-409 desoldering tweezer
  Item ZD-915 desoldering station

  Item soldering
  Item workshop tips

  Item decoupling capacitors

  Item Beryllium oxide
  Item EM veldsterkte
  Item radioactiviteit
  Item harardous radioation?

  Item SV500

stub filter [EN]

introduction permalink:
If there is a multi radio setup on the same site. The receiving station can be damaged by the strong electromagnetic fields of the transmitting antenna nearby. Therefore has the receiver to be protected against these string signals by filtering it. A stub filter can be the solution.

image is loading...

stub filter theory permalink:
A stub filter is the most simple filter you can imagine. It consists of, at least one, piece of coax cable of certain length. The length of the cable is related to the resonance frequency ant thereby also the frequency of the notch. The best way to explain the working is by an example;

image is loading...

The speed of light/electrons is 300.000.000 meter per second. The desired resonance frequency is 3,5MHz. According to the calculation results that in approximately 85,71 meters wavelength. The notch is at a quarter of the full wave, therefore the wavelength should be divided by four. That results in 21,43 meters. In theory, this should be the length of the stub. But since electrons travel slower trough coax than through free space, the speed (and length) has to be corrected. The "velocity factor" is normally known for each type of coax. In this example is RG-58 used with PE dielectric and has a velocity factor of 66% compared to free space. Therefore has the length of the stub (of 21,43 meters) to be reduced by 66% which results in a real length of 14,14 meters.
This piece of coax of 14,14 meters acts as a short circuit at 3,5MHz. If this frequency is multiplied by a odd number (3, 5, 7, and so on) the short circuit repeats at that frequency. Although each repeating notch is a little bit less "deep" due to losses in the cable. If this frequency is multiplied by an even number (2, 4, 6, and so on) the signal is damped for the minimum amount as possible.

A graphical view of this example is shown below.

image is loading...

The results can be also inverted. If the end of the stub is short circuited (the core connected to the shielding), the results are inverted.

stub filter in practice permalink:
As you can see in the example above, the ham bands are recognizable. 80, 40, 30, 20, 17, 15, 12 and 10 meter bands are visible. When two filters are made as described, one with an open end and one with a closed end, those can be very helpful. If two radio setups are very close, the receiving radio can be damaged by the large incoming signals of the nearby station. Even if the receiving station is at another frequency than the transmitting station. If station A is using the 3,5MHz open stub, it can be used on 7, 14, 21 and 28MHz since the signal is let trough. Spurious radiation on the 3,5, 10,5, 17,5 and 24,5MHz are suppressed in the stub filter. If station B is using the 3,5MHz closed stub, it can be used on 3,5, 10,5, 17,5 and 24,5MHz since the signal is let trough. Spurious radiation on the 7, 14, 21 and 28MHz are suppressed in the stub filter. The result is that both stations can operate simultaniously without interference of each other.

It is possible to use more stubs (of different lengths) in one filter. Keep in mind that the unwanted losses can be much more.

image is loading...

adjustment permalink:
The adjustment is quite simple. Using a spectrum analyser with tracking generator shows the notches. By cutting the (too long) coax will shift the notches to a higher frequency. Keep cutting the coax untill the notches are at the desired frequency of frequencies. After cutting the coax to the desired length, the open end can be "closed" by connecting the core to the shielding.

my experiences; first design permalink:
The initial plan was to make filters for using 10, 20 and the 40 meter bands with two radio's. I started to make three filters with two stubs to suppress the other two unused bands. Since two stubs are used in one filter, the losses for the usable band were quite large. Therefore a design change is made

my experiences; second design permalink:
Instead of two stubs, one stub for 3,5MHz is used. One closed stub and one open stub. The losses were less than two stub design. If there are more than two radio's on the same site, multiple stubs are necessary for the right combination. Since I planned to used "only" two radio's the 3,5MHz stub will do the job. 50% of the bands are for radio A and the other ham bands are for radio B. The 30 meter band is not optimally suppressed since the notch is slightly next to the band. Since we do not use telegraphy, this is accepted.

image is loading...

It is possible to use a piece of coax and a coax tee, but I chose to use new paint cans as a housing. Two connectors are mounted at the lid of the can and a wire bridge is created between the connectors. The piece of coax is connected to the wire bride and the wire is cut to length using a spectrum analyser with tracking generator. The wire end is isolated and the wire is put into the can. The final measurement is made with the lid onto the can. The result of can one is shown below.

image is loading...

image is loading...

credits permalink:
The creation/adjustment of this kind of filter is inspired by a YouTube video of Alan; W2AEW. The video is shown below.

open de afdrukbare pagina door hier te klikken

contact the administrator
If there are questions, notifications or other kind of information, please let me know by sending a messege to me by using the contact form below. If a responce on your message is desired, please make a note of it in the message. is. In this case, be sure your e-mail address is filled in on the form below.
Note; This message will be sent to the administrator and will not be shown om the website.
name (and callsign):
e-mail address:
Type 1839 in the form field as a check: - © 1984...2017 - Build: 20161003