AMATEURTELE.COM
...if your desired language isn't available, the alternative language will be shown...
Nederlands
informatie pagina voor experimenteel radio-onderzoekers
- - -
 algemeen
  + for sale
  + adressen
  + fail-gallery
  + press information
  + weblog/news

 apparatuur foto's
  + HP 331A distortion analyser
  + Philips PM2524 multimeter
  + Rigol DS-1054Z
  + Sayrosa 261 frequency counter
  + Schlumberger FS30 / FSM500

 applicaties (pc)
  + UI-View (APRS)

 banden
  + 27Mc
  + FRS
  + LPD
  + PMR

 componenten
  + (E)EPROM
  + crystals
  + resistor coding

 beurzen
  + RF Technology Days 2016

 connectoren
  + 12VDC connector
  + coax connectors
  + TNC connector

 Racal Cougar
  + 0. Racal Cougar
  + 1. introduction
  + 2. compnents
  + 3. assemblies
  + 4. technical
  + 5. modifications
  + 6. data protocol
  + 7. service

 documentatie
  + books
  + FUP1DZ manual
  + jargon
  + Morse code
  + NATO alphabet
  + Q-codes
  + radio notebook

 elektronenbuizen
  + 6H2N-EB / ECC83 / 12AX7
  + algemene informatie
  + ATP4 elektronenbuis
  + elektronenbuis codering
  + elektronenbuizen
  + gloeistroom/-spanning
  + reactiveren/reformeren
  + stabilisatiebuizen

 filters/combiners
  + 23 cm duplex filter
  + Aerial Facilities BPD-410/420-3N
  + Celwave P522 UHF duplexer
  + Hoxin DX-720 diplexer
  + JWX triplexer broadcast/VHF/UHF
  + Kenwood LF-30A LPF
  + Motorola UHF cavity combiner
  + Radiosystem RS460 cavity BPF
  + stub filter [EN]
  + basics: diplexer or duplexer

 legerzenders
  + AM-65/GRC
  + LV-80 RF PA
  + RT-70/GRC
  + SEM antennetuner (AGAT)
  + SEM25 gloeispanning
  + SEM25 transceiver
  + SEM35

 mechanica
  + krimplak
  + schroefdraad
  + verspanen

 meetapparatuur
  + 10/20/30 dB RF attenuator
  + Agilent 8591C
  + BG7TBL noise source
  + Daiwa CN-101L
  + Daiwa CN-801
  + HP P382A verzwapper
  + impedance converter 50/75 Ohm
  + x-tal tester (DIY project)
  + Krohn-Hite 4100 signal generator
  + Marconi 2955A
  + Radiosystem AB dummy load
  + Rigol DSA815-TG
  + Rohde & Schwarz CMT54
  + Rohde & Schwarz CMU200
  + Rohde&Schwarz SMT 02
  + Spinner BN 52-77-66
  + Zetagi DL50 dummyload

 tijdstandaard/GPSDO/oscillator
  + 10 MHz distribution amplifier
  + 10 MHz low pass filter
  + BG7TBL GPSDO
  + Frequency Electronics FE-5680A
  + HP 10811 OCVCXO
  + RS920 10MHz oscillator
  + RS920 OCXO timestandard
  + timestandard (general)
  + tijdstandaard; VE2ZAZ
  + time standard; W5OJM
  + Trimble 34310-T OCVCXO
  + Yaesu FT-8x7 (TC)XO

 meetapparatuur (info)
  + (poor mans) spectrum analyser
  + dummyload
  + frequentieteller
  + functiegenerator
  + meetverzwakker
  + octopus component tester
  + oscillator adjustment
  + staandegolfmeter
  + test- en meetapparatuur

 modificaties
  + Counter 1 MHz input mod.
  + Yaesu FT-897/FT-897D
  + Yaesu MH-48 lock mod

 naslagwerk
  + (coax) kabels coderen
  + APRS
  + AWG wire table
  + coax kabels testen
  + checking, cleaning and overhauling
  + Yaesu FT-8x7 CAT port
  + paneelbouw

 projecten
  + (remote) coax switch
  + afregelen FT-8x7(D)
  + APRS basispost
  + APRS tracker
  + coax switch 1-8
  + condensator microfoon
  + counter prescaler
  + CTCSS module
  + FT-2000 headset
  + FT-2000 remote
  + FUP1DZS meetzender
  + Geloso G.1/1040-A
  + Geroh AKAC019 liermast
  + go-kit
  + go-kit FT-7800
  + headset (Avcomm)
  + hoofdtelefoon versterker PL500
  + Icom IC-25E
  + Kerona AR-301 rotor
  + KLV 400 RF PA ombouw
  + Lineair 400W (Frinear)
  + MFJ-948 antenna tuner
  + parallelle poort controller
  + Pixie CW TX
  + programmeren FT-8x7
  + Samlex SEC 1223 voeding
  + TH-D7E tracker
  + Tinytrak 4
  + uTracer 3+
  + voedingsconnector FT-897
  + VSWR SA meetbrug
  + Yaesu FT-857/897 meter
  + zwaai Alinco DR-135E MkII

 publicaties
  + elektromigratie in filters

 radioapparatuur
  + Ameritron ATR-20 tuner
  + Baofeng UV-5R
  + Diamond X-30N antenna
  + Icom IC-2e
  + Icom IC-7300
  + Kenwood TH-D7E
  + Kenwood TS-830M
  + Logper antenna 1,35...9,5 GHz
  + MFJ-901b antennetuner
  + MFJ-948 antennetuner
  + MFJ-971 antenna tuner
  + QYT KT-8900
  + Triple-P TXU-1256 repeater
  + Wouxun KG-UVD1P
  + Wouxun speakermike
  + Yaesu FT-101E
  + Yaesu FT-1500M
  + Yaesu FT-2000
  + Yaesu FT-7800
  + Yaesu FT-817
  + Yaesu FT-857(D)
  + Yaesu FT-897(D)
  + Yaesu FT-8x7 serie
  + Yaesu FT-991

 reparaties
  + capacitors
  + Geloso 3227 versterker
  + Kenwood TS-830M
  + Lorenz SEM25
  + Yaesu FT-897D

 Rigol DSA815-TG
  + meting: omroepband
  + test: overspraak TG
  + test: TG signaal

 schakelingen
  + elektret microphone
  + Time Domain Reflectometer

 surplus apparatuur
  + Motorola GM950 (70 MHz)
  + Racal VRM5080
  + Rohill R-2050
  + Teletron/Condor

 telefonie surplus
  + Ericsson F-955
  + Ericsson F-955 modifcations 2017
  + Ericsson RS203/RS2062
  + Nokia NCM30
  + Nokia NNF30
  + Nokia RD72
  + Radiosystem monitoring unit
  + Radiosystem RS922
  + Radiosystem RS923
  + Radiosystem RS950
  + Radiosystem RS951
  + Radiosystems RS963
  + Radiosystems RS9694
  + Rohde & Schwarz CMD53
  + RS925 service box

 theorie
  + aarding
  + antenna rotor
  + antennetuner
  + circulator/isolator
  + snubber diode

 gereedschap
  + Minipro TL866 programmer
  + Velleman VTSSC50N soldering station
  + Yihua 852D+ soldeering station
  + ZD-409 desoldering tweezer
  + ZD-915 desoldering station

 werkplek
  + soldering
  + workshop tips

 EMC/EMI
  + decoupling capacitors

 veiligheid
  + Beryllium oxide
  + EM veldsterkte
  + radioactiviteit
  + harardous radiation?

 overig
  + SV500 radiation meter


gloeistroom/-spanning

Nederlandse inleiding permalink: http://www.amateurtele.com/index.php?artikel=100&id=#320
Elektronenbuizen hebben doorgaans een gloeidraad om een "elektronenwolk" te produceren. Door het opwarmen van de gloeidraad komen er elektronen vrij die nodig zijn om de elektronenbuis op te laten werken. De elektronenafgifte is optimaal bij een zekere spanning en stroom. En volgens de wet van Ohm hoort hier een zekere weerstandswaarde bij. Een eigenschap van een gloeidraad is dat de weerstand in koude toestand lager is dan in warme "bedrijfstoestand". Dit kan voor problemen zorgen in de vorm van slijtage met falen als gevolg. Dit artikel behandeld een aantal mogelijkheden om de levensduur en prestaties van elektronenbuizen te verlengen.

Nederlandse PCL86 triode/pentode permalink: http://www.amateurtele.com/index.php?artikel=100&id=#321
Het meest eenvoudig is om de mogelijkheden aan de hand van een voorbeeld te beschrijven. In mijn geval was ik aan het testen met een setje PCL86 elektronenbuizen. Dit is een buis met een triode en een pentode in één. Deze is ideaal om een audio versterker van te bouwen van een paar Watt. "P" buizen zijn heel veel toegepast in oude (kleuren) televisies. Deze televisies zijn massal gedemonteerd en daarmee zijn er veel van dergelijke "P" buizen te vinden. De gloeidraden van meerdere buizen stonden in serie waardoor deze een ongebruikelijke spanning (kunnen) hebben. Doorgaans is 6,3V een gebruikelijke spanning, maar in het geval van de PCL86 is de werkspanning 13,3V.
De gloeidraad van de PCL86 werk zoals gezegd op 13,3V en dan loopt er een stroom van 300mA. De spanning gedeeld door de stroom is de weerstand. Dus afgerond is de weerstand in warme toestand: 13,3V / 0,3A = 44,3Ohm. In koude toestand meet ik met de multimeter 7Ohm als weerstand van de gloeidraad. Dit is aannemelijk doordat de gloeidraad in koude toestand een lagere weerstand heeft. En hier zit ook het mogelijke probleem...

Nederlandse optie 1: zonder regeling permalink: http://www.amateurtele.com/index.php?artikel=100&id=#322
image is loading...


In deze situatie is de gloeidraad op 13,3V gevoed zonder bijkomende componenten. Zo blijkt dat er in warme toestand de gewenste 300mA loopt bij 13,3V. De problemen verschijnen echter bij de koude toestand. De interne weerstand is in koude toestand 7Ohm. 13,3V / 7Ohm = 1,9A! De slijtage van een gloeidraad wordt primair bepaald door de stroom. En ruim zes maal de nominale stroom is niet goed voor een elektronenbuis. Doordat de stroom zo extreem is, warmt de gloeidraad zeer snel op en verhoogt de weerstand dat vervolgens het negatieve effect compenseert. Ondanks de compensatie zal er zeer waarschijnlijk onherstelbare schade opteden. Ga maar na, een "normale" gloeilamp gaat vrijwel altijd kapot bij het inschakelen van de spanning. Daaruit is af te leiden hoe veel langer een lamp mee kan gaan als de inschakelstroom beperkt wordt...

Nederlandse optie 2: weerstand permalink: http://www.amateurtele.com/index.php?artikel=100&id=#323
image is loading...


In deze situatie is een weerstand toegevoegd. Weliswaar is de waarde niet van een bestaande E12 waarde, maar het is ook maar een rekenkundig voorbeeld. De weerstand en de gloeidraad nemen dezelfde stroom op doordat deze in serie staan. Uit de berekening blijkt dat in warme toestand de spanning over de weerstand 1,71V is en de spanning over de gloeidraad (vrijwel) de gewenste 13,29V is. In koude toestand zal er door de lage weerstand in de gloeidraad alsnog een stroom van 1,18A lopen! Door het kiezen van een andere voedingsspanning en bijbehorende weerstand waarde kan de stroom worden beperkt, maar het zal nooit ideaal worden. Temeer omdat er een groot gedeelte van de energie in de weerstand om wordt gezet in "verloren" warmte, ongeveer 513mW contimue. (1,71VDC * 0,3A = 0,513A)

Nederlandse optie 3: stroomregeling (optimaal) permalink: http://www.amateurtele.com/index.php?artikel=100&id=#324
image is loading...


Deze schakeling is de voorgestelde schakeling als zijnde optimaal. Er is een LM317T spanningsregelaar toegepast. Dit is een spanningsregelaar die gelijkspanning tot 1,5A stroom kan verwerken en een spanningsverschil van maximaal 40VDC aan kan. Door de referentie aansluiting is het mogelijk om een gewenste spanning in te stellen. Echter is hier een truc toegepast om met de spanningsregelaar de stroom te regelen. Het is een gegeven dat het spanningsverschil tussen de uitgang van de regelaar en de referentie aansluiting altijd 1,25VDC is. Spanning gedeeld door de stroom is de weerstand. Dus afgerond is 1,25VDC / 0,3A = 4,2Ohm. Met andere woorden zal er altijd 300mA lopen door de weerstand bij 1,25VDC. Het gevolg is dat volgens de schakeling de elektronenbuis in warme toestand 297mA heeft bij 13,16VDC. In koude toestand zal de stroom ook altijd 300mA zijn, dus de spanning terug regelen bij een lagere belastingsweerstand van de gloeidraad. In de praktijk zal bij inschakelen van de voeding, de spanning terug worden geregeld tot ongeveer 2VDC in koude toestand bij 7Ohm gloeidraadweerstand. Naar mate de draad warmer wordt en de gloeidraad weerstand toeneemt, zal de stroom oplopen totdat deze stabiliseert op 297mA. Kortom, de gloeidraad wordt qua stroom altijd gelijk belast en zal hierdoor veel langer mee gaan. De vaste weerstand heeft in dit geval 1,25V bij 300mA te verwerken, dus zal 375mW in warmte omzetten. Dat ten opzichte van 3,9W warmteverlies in de gloeidraad is netjes lijkt mij.
Als je voornemens bent om een apparaat met elektronenbuizen te bouwen, zou ik deze schakeling in het ontwerp integreren. De levensduur van de elektronenbuizen wordt verlengt hetgeen prettig is.
Om de schakeling helemaal netjes te maken is het aan te raden een LM317T spanningsregelaar daadwerkelijk als spanningsregelaar voor de stroombeperking toe te passen. Dan wordt de spanning of de stroom beperkt al na gelang het eerst bereikt is. Dit kan overspanning tegen gaan, hoewel de kans hierop nihil is. Ik heb de spanningsregeling zelf niet toegepast omdat de stroom leidend is. Vergeet in het geval van de spanningsregeling niet om 1,25VDC bij de gewenste gloeispanning op te tellen omdat dit verloren gaat in de weerstand van de stroomregeling.

Nederlandse opgloei tijden permalink: http://www.amateurtele.com/index.php?artikel=100&id=#332
Voor drie elektronenbuizen heb ik de opgloeitijden van de gloeidraad bepaald. Dat wil zeggen wat de tijd is tussen inschakelen van de voeding, via stroombegrenzing, waardoor de spanning oploopt tot de werkspanning. Deze tijd is nodig om de gloeidraad van de elektonenbuis op te laten "starten". Voordat de gloeidraad opgegloeid is, is het advies om de hoogspanning niet op de elektronenbuizen te zetten. Doordat er in koude toestand geen elektronenwolk is, is de interne weerstand van de buis anders dat kan leiden tot verkeerde spanningen en stromen in de schakeling.

testresultaten
Voor drie buizen die ik bij de hand had, heb ik onderstaande opgloeitijden bepaald.
- EL34 eindpentode (AF): 1,5A @ 6,3VDC (9,45W) = 17 seconden
- ATP4 eindpentode (RF/AF): 340mA @ 2,3VDC (782mW) = 4,2 seconden
- ECC83 voorversterker dubbeltriode (AF): 150mA @ 12,6VDC (1,89W) = 13 seconden

rekenkundig verband
Op basis van de bevindingen heb ik geprobeerd om een rekenkundig verband te bepalen. Dan zou aan de hand van de stroom, spanning, weerstand of vermogen de opgloei tijd bepaald kunnen worden. Op basis van deze drie metingen is helaas geen rekenkundig verand te bepalen. Wel is duidelijk dat een gloeidraad van een hoger wattage meer tijd nodig heeft om op te gloeien. Daar het beperkt blijft tot een tiental seconden wordt aangenomen dat de opwarmtijd tot een halve minuut tot een minuut voldoende is.

open de afdrukbare pagina door hier te klikken


AmateurTele.com - © 1984...2017 - Build: 20170627