> menu inklappen <
algemeen
adressen/contacten
equipment buy/sell
fail-gallery
press information
for sale!
weblog/news
apparatuur foto's
Elcom PAN2000
HP 331A distortion analyser
Leader LDM-815 dipmeter
Philips PM2524 multimeter
Rigol DS-1054Z
Sayrosa 261 frequency counter
Schlumberger FS30 / FSM500
APRS
APRS inleiding
APRS termen en definities
APRS protocol
radio instellingen
station types
SSID
symbolen
applicaties/software
internet info (realtime kaart)
hardware
(on)bemand zenden
banden
27Mc
FRS
LPD
PMR
componenten
(E)EPROM
crystals
resistor coding
connectoren
12VDC connector
coax connectors
documentatie
books
FUP1DZ manual
jargon
Morse code
NATO alphabet
Q-codes
radio notebook
serial port/RS232
elektronenbuizen
6H2N-EB / 6N2P / ECC83 / 12AX7
algemene informatie
ATP4 elektronenbuis
elektronenbuis codering
elektronenbuizen
gloeistroom/-spanning
IV-25 dot bar VFD
reactiveren/reformeren
stabilisatiebuizen
filters/combiners
23 cm duplex filter
Aerial Facilities BPD-410/420-3N
Celwave P522 UHF duplexer
Hoxin DX-720 diplexer
JWX triplexer broadcast/VHF/UHF
Kenwood LF-30A LPF
Motorola UHF cavity combiner
Radiosystem RS460 cavity BPF
stub filter
basics: diplexer or duplexer
surplus (defensie)
Racal Cougar introduction
Racal PRM4515L technical description
Racal PRM4515L data protocol
Racal Cougar SMT Amplifier TA4523L
Racal Cougar Fill Gun; MA 4083
Racal Cougar PRM1545L
LV-80 RF PA
Racal VRM5080
SEM35
SEM25 transceiver
SEM25 gloeispanning
SEM power distribution
SEM antennetuner (AGAT)
RT-3600 introduction
RT-3600 connector repair
CX-3600 power cable
LS-4621 loudspeaker unit
MT-4620 mounting
CG-5826 antenna cable
RT-4600 repair
AM-65/GRC
surplus service
NSN codes
surplus radio colors
document coding
surplus (industrie)
BBC Vericrypt 1100
Motorola GM950 (70 MHz)
Polyphaser
Rohill R-2050
Teletron/Condor
Teltronic M-250
surplus (telefonie)
Ericsson F-955
Ericsson F-955 modifcations 2017
Ericsson RS203/RS2062
Radiosystem monitoring unit
Radiosystem RS950
Radiosystem RS951
Rohde & Schwarz CMD53
mechanica
lathe
krimplak
schroefdraad
verspanen
meetapparatuur
10/20/30 dB RF attenuator
Agilent 8591C
BG7TBL 10 MHz bandpass filter
BG7TBL noise source
Bird 8201 dummy load
Daiwa CN-101L
Daiwa CN-801
HP 8782B vector signal generator
HP P382A verzwapper
impedance converter 50/75 Ohm
x-tal tester (DIY project)
Krohn-Hite 4100 signal generator
Marconi 2955A
Marconi TF2163
Radiosystem AB dummy load
Rigol DSA815-TG
Rohde & Schwarz CMT54
Rohde & Schwarz CMU200
Rohde & Schwarz ZVM
Rohde&Schwarz SMT 02
Spinner dummyload
Zetagi DL50 dummyload
tijdstandaard/GPSDO/OSC
10 MHz distribution amplifier
10 MHz low pass filter
BG7TBL GPSDO
Frequency Electronics FE-5680A
GPSDO time display
HP 10811 OCVCXO
leap second
RS920 10MHz oscillator
timestandard (general)
tijdstandaard; VE2ZAZ
time standard; W5OJM
Trimble 34310-T OCVCXO
Yaesu FT-8x7 (TC)XO
meetapparatuur (info)
(poor mans) spectrum analyser
dummyload
frequentieteller
functiegenerator
meetverzwakker
octopus component tester
oscillator adjustment
staandegolfmeter
Step Attenuator
test- en meetapparatuur
modificaties
Counter 1 MHz input mod.
Icom IC-756PRO fan mod
Yaesu FT-897/FT-897D
Yaesu MH-48 lock mod
naslagwerk
(coax) kabels coderen
AWG wire table
coax kabels testen
checking, cleaning and overhauling
DTMF
Yaesu FT-8x7 CAT port
paneelbouw
s-meter
Selcall / 5TVO
output impedance
projecten
afregelen FT-8x7(D)
counter prescaler
CTCSS module
FT-2000 headset
FT-2000 remote
FUP1DZS meetzender
Geloso G.1/1040-A
Geroh AKAC019 liermast
go-kit FT-7800
headset (Avcomm)
RF power amplifier
hoofdtelefoon versterker PL500
Icom IC-25E
Kerona AR-301 rotor
KLV 400 RF PA ombouw
MFJ-948 antenna tuner
Nixie clock
parallelle poort controller
Pixie CW TX
programmeren FT-8x7
TH-D7E tracker
uTracer 3+
VSWR SA meetbrug
Yaesu FT-857/897 meter
zwaai Alinco DR-135E MkII
publicaties
elektromigratie in filters
Ruisvrij squelch schakelen
SINAD
modems/trackers
AEA PK88 TNC
Baycom modem
Byonics TinyTrak 4
Byonics TinyTrak3
DK9SJ TNC2S TNC
TNC7multi / TNC2multi
antennetuners
Ameritron ATR-20 tuner
MFJ-901b antennetuner
MFJ-948 antennetuner
MFJ-971 antenna tuner
antennes
Diamond X-30N antenna
Logper antenna 1,35...9,5 GHz
voedingen
Maas/KPO/Manson SPA-8230 voeding
Samlex SEC 1223 voeding
(zend)ontvangers
Baofeng UV-5R
Icom IC-2e
Icom IC-705
Icom IC-706
Icom IC-7100
Icom IC-7300
Kenwood TH-D7E
Kenwood TS-830M
QYT KT-8900
Telefunken ELK 639
Triple-P TXU-1256 repeater
Wouxun KG-UVD1P
Wouxun speakermike
Yaesu FT-101E
Yaesu FT-1500M
Yaesu FT-1802
Yaesu FT-2000
Yaesu FT-2800M
Yaesu FT-3D portofoon
Yaesu FT-7800
Yaesu FT-817
Yaesu FT-857(D)
Yaesu FT-897(D)
Yaesu FT-8x7 serie
Yaesu FT-991
Yaesu FTM-100
reparaties
capacitors
Geloso 3227 versterker
Icom IC-706mkIIG
Kenwood TS-830M
LeCroy waveAce 2004
Lorenz SEM25
Yaesu FT-817
Yaesu FT-897D
schakelingen
elektret microphone
Time Domain Reflectometer
theorie
aarding
antennetuner
waves
snubber diode
gereedschap
Minipro TL866 programmer
Velleman VTSSC50N soldering station
Yihua 852D+ soldeering station
ZD-409 desoldering tweezer
ZD-915 desoldering station
EMC/EMI
9/150 kHz HPF
decoupling capacitors
ESH2-Z5 LISN
Line Impedance Stabilisation Network
werkplek
component archive
soldering
workshop tips
veiligheid
Beryllium oxide
EM veldsterkte
radioactiviteit
harardous radiation?
avionica
Avionics 'virus'
Avionics safety!
Avionics power
Avionic basics
Eicor Class-A Inverter
Racal 80794 CDU
Smiths Radio Altimeter
Smiths Director Horizon H6
Smiths Fuel Quantity Indicator
Bendix turn and slip indicator
Ferranti FTS 21T turn and slip indicator
Ferranti FEI30 display unit
Kearfott vertical gyroscope
VDO ST443-3 Nozzle Position Indicator
Tornado TV TAB DU: introduction
Tornado TV TAB DU: original use
Tornado TV TAB DU: frame module
Tornado TV TAB DU: wire harness
Tornado TV TAB DU: keyboard module
Tornado TV TAB DU: CRT module
Tornado TV TAB DU: LVPS
Tornado TV TAB DU: HVPS
Tornado TV TAB DU: A1 PCB
Tornado TV TAB DU: A2 PCB
Tornado TV TAB DU: A3 PCB
Tornado TV TAB DU: A4 PCB
Tornado TV TAB DU: A5 PCB
Tornado TV TAB DU: A6 PCB
Tornado TV TAB DU: reverse eng.
overig
Gamma Scout
PI3WAD V1
SV500 radiation meter
|
Ericsson F-955 modifcations 2017
|
inleiding
|
Als beginnende experimenteel radio-onderzoeker heb ik een jaar of tien geleden een dubbele Ericsson F-955 gekocht. Helaas is het project nooit gestart omdat mijn kennis, kunde en gereedschap tekort schoot om de ombouw te kunnen realiseren. Het apparaat is daarop verkocht. Ik heb altijd fascinatie gehad voor de F-955 en daarom heb ik afgelopen jaar weer een dubbele F-955 aangeschaft. Ik denk dat mijn kennis, kunde en gereedschap ondertussen zo ver gegroeid is dat het project tot een succesvol einde is te brengen. Ondertussen zijn er "grootste" plannen met de apparatuur. De plannen en bevindingen staan hieronder beschreven.
 Eén rek met twee Ericsson F-955 (ex mobiele telefonie) zendontvangers.
|
werking doorgronden
|
Door het museum Jan Corver in Budel is een prachtige ombouw handboek samengesteld. Tien jaar geleden is het niet gelukt om de werking te kunnen doorgronden. En voordat ik aan het solderen wil slaan, wil ik het apparaat begrijpen om het maximale eruit te halen. Ik heb daarop een paar avonden naar de beschrijving en schema's zitten turen om het apparaat te begrijpen. Wederom ben ik tegen het probleem aangelopen dat ik de frequentie instelling niet goed kon doorgronden. Ondertussen is mijn kennis over PLL's gegroeid en toch kwam ik er niet uit. Het instellen van de frequentie, door middel van een deeltal, kon ik niet plaatsen in het blokschema. Maar de puzzel is opgelost!

Synthesizer blokschema van de Ericsson F-955
De "bovenste route" tussen de oscillator en de fasevergelijker bepaalt de stapgrootte. Omdat het signaal met vier vermenigvuldigt wordt, is 2,5 kHz in werkelijkheid 10 kHz stapgrootte. En zo ook een referentie frequentie vna 3,125 kHz om mijn gewenste 12,5 kHz stapgrootte te verkrijgen. De "onderste route" kan qua deeltal worden beïnvloed om de gewenste frequentie te verkrijgen. Bij het invoeren van deeltal "n" is mijn verwarring onstaan. Gebleken is dat er een vast deeltal is ingesteld zoals 475 op de bovenstaande afbeelding. Het kanaalnummer "n" wordt van het vaste deeltal afgehaald om de gewenste frequentie instelling te verkrijgen. Dus voor kanaal 001 is het werkelijke deeltal (475 - 1 = ) 473 en voor bijvoorbeeld kanaal 222 (475 - 222 = ) 253. Na het doorrekenen van het geheel, blijkt alles te kloppen. De Interface Unit (IU) bepaalt het deeltal voor de twee synthesyzers (FGTX en FGRX) door het instellen van een kanaalnummer door middel van de drie dubbelwerkende schakelaars. Hiermee is het moeilijkste ontrafeld en is de werking duidelijk geworden. Ook is nu duidelijk wat de beperkingen zijn in de ombouw mogelijkheden.
|
Het (voort)bestaan van deze website wordt mede mogelijk gemaakt door aanbieden van onderstaande reclame.
|
beperkingen en nieuwe kansen
|
De ombouwbeschrijving beschrijft een aantal verschillende ombouw mogelijkheden. Denk hierbij aan verschillende kanaalstappen, mogelijkheid voor repeater gebruik en verschillende bereiken. In de meest ideale situatie kan de gehele 70 cm band worden gebruikt, met 12,5 kHz kanaalstappen én +1,6 en -7,6 MHz shift. Dit kan helaas niet volgens de ombouwhandleiding... Mede omdat er "maar" 222 kanalen kunnen worden geselecteerd. Ik vind dat erg jammer en ik ben aan het spitten gegaan in de schema's om alternatieven te vinden. En na een paar dagen puzzelen denk ik dat het mogelijk is om de F-955 om te bouwen tot een alleskunner. Lees: 12,5 kHz stapgrootte, 800 kanalen, de gehele 70 cm band bestrijken, (10 MHz ingang voor extra nauwkeurigheid), +1,6 MHz én -7,6 MHz shift! Oké, de ombouw wordt "ingewikkelder", maar het apparaat wordt naar mijn idee een heel stuk interessanter. Op papier lijkt het te kunnen, of het in de praktijk kan zal blijken... Ten tijde van de "oorspronkelijke" ombouw waren Aruino's nog niet op de markt waardoor de voorgenomen ombouw nauwelijks mogelijk was. Bij de oorspronkelijke ontwerp overwegingen is ook duidelijk aangegeven dat de opzet was om een laagdrempelige ombouw te realiseren en er daarmee ook niet in de EPROM is gespit van de interface unit. Maar ondertussen is microcontroller techniek voor vrijwel iedereen bereikbaar geworden waardoor een "complexe" ombouw nu in de praktijk minder complex is.
|
ombouw van de IU (Interface Unit)
|
kanaalselectie Het in te stellen kanaalbereik is van 001 tot en met 222. Elke digit is met een "eigen" schakelaar te verhogen en te verlagen. Dus elk cijfer is per corresponderend schakelaar klikje te verhogen of te verlagen tussen 0 en 9. Echter als je van 222 naar 223 wilt, blijft 222 behouden. Achter elke schakelaar is een HEF4510B up/down counter chip geplaatst. Met een klikje omhoog of omlaag worden de bijbehorende vier draden ingesteld om op het geselecteerde getal 0...9. Eigenlijk ook nog tot en met F omdat de chip hexadecimaal telt van 0 tot en met F. (0000 [bin] tot en met 1111 [bin]) Voor de rechter digit en de middelste digit zijn vier draden die via het backplane naar de synthesizers (FGTX en GFRX) gaan. Deze zorgen voor de deeltal telling van 00 tot en met 99. Het linker circuit wijkt iets af, er gaan geen vier maar twee draden via het backplane naar de synthesizers (FGTX en GFRX). Dus er kan maar geteld worden tot 3. Twee draden zorgen voor vier binaire combinaties 0, 1, 2 en 3. Dus de deeltallen kunnen theoretisch tot 399 omdat de bedrading er is, maar omdat er een beperking is door de 2716 EPROM kan er maar tot 222 worden geteld.
EPROM kanaalbeperking De uitgangen van de drie HEF4510B counters zijn gekoppeld aan de ingangen van de EPROM. Dus bij elk kanaal dat wordt geselecteerd door de schakelaars, wordt een bijbehorende geheugenpositie in de EPROM geselecteerd. Van de EPROM uitgang draden zijn er zeven gebruikt om de up/down counters te voorzien van andere informatie en het laatste draad wordt gebruikt om de up/down counters de updaten met de nieuw aangeboden informatie. Oké, dit klinkt ingewikkeld, maar het valt erg mee. Een voorbeeld is wellicht beter ter verduidelijking. Wanneer bijvoorbeeld kanaal 001 wordt geselecteerd, dan wordt EPROM adres (hexadecimaal) 0x0001 geselecteerd, ofwel adres locatie 1. De inhoud van deze locatie is 0x00 ofwel binair 0000 0000. Dus de uitgangen zijn allemaal laag. Het laatste bit is laag, dus de up/down counters worden niet vernieuwd met nieuwe informatie. Dus de kanaalinstelling blijft 001. Wanneer er van kanaal 009 naar 00A wordt geklikt (9 + 1 = 10 [dec] = A [hex]), dan wordt EPROM adres 0x000A geselecteerd. De inhoud van deze locatie is 0x03, ofwel 0000 0011 [bin]. Twee draden zijn hoog. Het ene draad is ingang "1" van de rechter up/down counter digit en het andere draad is het draad dat de up/down counters vult met nieuwe informatie. Dus bij het handmatig selecteren van digit "A" grijpt de EPROM in door via de "alternatieve ingang" het getal 0x01 (0001) aan te bieden én een puls te geven zodat de up/down counter naa het aangeboden getal spring en de handmatige invoer "overschrijft". Zo kan in geen geval A, B, C, D, E en F worden gezelecteerd als digit waarde en alleen 0...9. Bij selectie van kanaal 222 wordt EPROM adres 0x0222 geselecteerd en de waarde is 0x00 (0000 0000) dus de waarde blijft behouden omdat deze niet wordt overschreven. Wanneer er naar handmatig kanaal 223 wordt geschakelt, wordt EPROM geheugen positie 0x0223 geselecteerd waarin 0x95 (1001 0101) is opgeslagen. De eerste bit zet de linker digit op "2", de volgende vier bits zetten de middelste digit op "2", de volgende twee bits zetten de rechter digit op "2" en de laatste bit zorgt ervoor dat de up/down counter worden gevuld met deze nieuwe informatie waardoor bij het schakelen naar kanaal 223 direct terug wordt gesprongen naar kanaal 222.
EPROM wijzigen Door het verwijderen van de EPROM is de kanaal selectie (in theorie) ongelimiteerd. (In de praktijk is de EPROM wel nodig voor goede werking, dus herprogrammeren is nodig.) Er kan (na herprogrammeren) dus wel tot FFF worden geteld, maar dit is onwenselijk omdat decimale telling handiger is. Voor mijn voorgenomen ombouw wil ik van 0 tot en met 799 kunnen "tellen". De eerste stap is dus om de EPROM anders te programmeren. Alle adres positie (en ook kanaalnummers) die wenselijk zijn moeten met 0x00 worden gevuld om de ingestelde kanaalnummers te behouden. Alle andere adressen moeten gevuld worden met een andere waarde waarnaar verwezen moet worden. Mij lijkt het ook handig om van kanaal 009 door te kunnen schakelen naa 010 in plaat terug naar 000. Dit is mogelijk door adres 0x0A te vullen met een waarde dat verwijst naar kanaal 010. Van 00 tot en met 99 is dit (met een kleine hardware modificatie) mogelijk. Doordat er maar één draad (aan ingang "2") naar de up/down counter van de linker digit gaat, kan alleen een 0 (geen signaal) of een 2 (hoog signaal) worden geselecteerd. Dus een beperking is dat van kanaal 099 niet naar kanaal 100 geklikt kan worden maar de telling naar 000 springt. Maar het doortellen is een "nice to have", dus naar mijn idee niet bezwaarlijk. Kortom, door de EPROM te (her)programmeren is het mogelijk om tot kanaal 799 te kunnen tellen. Dit is ook meteen het hardwarematig maximale aantal te selecteren kanalen! Luck me! ;-)
relatie tussen EPROM grootte en kanaalstappen Voor de échte die-hards hier te berekening: 12 adres pennen met twee mogelijkheden (0 of 1) zorgt voor (2^11 = ) 2.048 adres locaties. Per adres worden er 8 bits opgeslagen. Dus in totaal (2.048 x 8 = ) 16.384 bits. (Vandaar dat het een 16 kB EPROM wordt genoemd.) Omdat alleen adressen met 0...9 werkbaar zijn vallen er 6 (A, B, C, D, E en F) adressen af van de 16. Dus (2.048/ 16 * 10 =) 1.280 adressen. Per adres kunnen er ook geen hexadecimale waarden worden opgeslagen van A tot en met F waardoor er ook 6 van de 16 afvallen. Dus er blijfen in totaal precies (1.280 / 16 * 10 =) 800 adressen/kanalen over! Dus bij 12,5 kHz kan een maximale bandbreedte van 12,5 stapgrootte * 800 kanalen = 10 MHz worden bestreken. En de 70 cm band gaat van 430 to en met 440 Mhz, dus dat komt perfect uit!
|
Het (voort)bestaan van deze website wordt mede mogelijk gemaakt door aanbieden van onderstaande reclame.
|
wordt vervolgd...
|
Het onderzoek duurt (in de schaarse vrije tijd) voort, dus het gaat niet heel snel. Als er ontwikkelingen zijn, wordt het hier aangevuld...
|
Het aanbieden van de kennis via deze website kost tijd, energie en geld. Het is heel leuk om kennis te kunnen delen en anderen hiermee te kunnen helpen, maar ook alle kosten worden uit privé middelen voldaan. Er zijn onder andere kosten voor de hosting aanbieder om de site te kunnen laten bestaan. Mijn doel is om de inhoud aan te kunnen blijven bieden zonder reclame, maar de kosten worden hoger waardoor financiële middelen nodig zijn. Dus een bijdrage van €3 wordt zeer op prijs gesteld. Het is mogelijk om op een veilige manier een financiële bijdrage van €3 (of een veelvoud hiervan) te kunnen leveren. Klik op de knop hieronder om via Ko-fi een donatie te verzorgen.
|
|